深度學習可以解決自我駕駛問題嗎?

到目前為止,自動駕駛汽車中使用的LiDAR的成本要高于某些低檔汽車本身。激光雷達的維護和處理輸出仍然是一項昂貴的工作,令人頭疼。因此,這使得它們成為自動駕駛汽車的商業(yè)化生產的較不適合的選擇。

激光雷達在計算“深度”信息方面非常準確,深度信息是無人駕駛汽車執(zhí)行路徑規(guī)劃,與物體保持安全距離等操作的最重要內容之一。這使LiDARs成為集成到自動駕駛汽車中的理想選擇。但是問題是,它們太貴了!

此前,高射程激光雷達的成本約為75,000美元。但是,為降低激光雷達的成本一直在進行昂貴的研究。Alphabet公司的母公司Waymo通過廣泛的研究將成本降低了90%!

到目前為止,自動駕駛汽車中使用的LiDAR的成本要高于某些低檔汽車本身。激光雷達的維護和處理輸出仍然是一項昂貴的工作,令人頭疼。因此,這使得它們成為自動駕駛汽車的商業(yè)化生產的較不適合的選擇。

其次,LiDAR在惡劣的天氣條件下不能很好地工作,它們會產生噪點,這可能會使LiDAR點云的輸出不準確。

盡管如此,公司仍應該投資使用LiDAR和點云處理進行自動駕駛的方法,因為誰知道,也許有一天LiDAR也會變得便宜嗎?

相機非常適合捕捉場景的高分辨率細節(jié)。但是問題是,它們沒有像LiDAR那樣為我們提供“深度信息” :(折衷方案在世界上到處都是。相機的輸出是高分辨率,但是是2D平面圖像。這幾乎是不可能的??梢詮膯蝹€圖像中獲取“深度信息”,有些方法可以使用立體視覺從圖像中獲取深度。

給定從放置在同一水平高度一定距離的兩個攝像機捕獲的兩個圖像,我們可以使用計算機視覺算法估計深度信息。

12下一頁>

(免責聲明:本網站內容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網站出現(xiàn)的信息,均僅供參考。本網站將盡力確保所提供信息的準確性及可靠性,但不保證有關資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責。本網站對有關資料所引致的錯誤、不確或遺漏,概不負任何法律責任。
任何單位或個人認為本網站中的網頁或鏈接內容可能涉嫌侵犯其知識產權或存在不實內容時,應及時向本網站提出書面權利通知或不實情況說明,并提供身份證明、權屬證明及詳細侵權或不實情況證明。本網站在收到上述法律文件后,將會依法盡快聯(lián)系相關文章源頭核實,溝通刪除相關內容或斷開相關鏈接。 )

贊助商
2020-07-24
深度學習可以解決自我駕駛問題嗎?
到目前為止,自動駕駛汽車中使用的LiDAR的成本要高于某些低檔汽車本身。激光雷達的維護和處理輸出仍然是一項昂貴的工作,令人頭疼。因此,這使得它們成為自動駕駛汽車的商業(yè)化生產的較不適合的選擇。

長按掃碼 閱讀全文